Interaction quench in the Hubbard model.
نویسندگان
چکیده
Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of interacting quantum many-body systems, we investigate the opposite limit of Landau's Fermi-liquid paradigm: We study a Hubbard model with a sudden interaction quench, that is, the interaction is switched on at time t=0. Using the flow equation method, we are able to study the real time dynamics for weak interaction U in a systematic expansion and find three clearly separated time regimes: (i) An initial buildup of correlations where the quasiparticles are formed. (ii) An intermediate quasi-steady regime resembling a zero temperature Fermi liquid with a nonequilibrium quasiparticle distribution function. (iii) The long-time limit described by a quantum Boltzmann equation leading to thermalization of the momentum distribution function with a temperature T proportional, variantU.
منابع مشابه
Thermalization after an interaction quench in the Hubbard model.
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization o...
متن کاملQuench field sensitivity of two-particle correlation in a Hubbard model
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelate...
متن کاملQuantum quench of an atomic Mott insulator.
We study quenches across the Bose-Hubbard Mott-insulator-to-superfluid quantum phase transition by using an ultracold atomic gas trapped in an optical lattice. Quenching from the Mott insulator to the superfluid phase is accomplished by continuously tuning the ratio of Hubbard tunneling to interaction energy. Excitations of the condensate formed after the quench are measured by using time-of-fl...
متن کاملSpreading of correlations and entanglement after a quench in the Bose-Hubbard model
We investigate the spreading of information in a Bose-Hubbard system after a sudden parameter change. In particular, we study the time-evolution of correlations and entanglement following a quench. The investigated quantities show a light-cone like evolution, i.e. the spreading with a finite velocity. We discuss the relation of this veloctiy to other characteristic velocities of the system, lik...
متن کاملروش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 100 17 شماره
صفحات -
تاریخ انتشار 2008